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Abstract. We prove results about the eigen structure and the singular values
of centrosymmetric, skew—centrosymmetric, and doubly skew matrices, and
about regular magic squares.

1. Introduction

Goldstein [7] reduced the eigen problem of a Hermitian persymmetric matrix to
an eigen problem of a real symmetric matrix of the same size. We generalize his the-
orem to a wider class of matrices. The proof of our theorem is simple and valid for
both even and odd orders. We present a linear orthogonal transformation between
centrosymmetric matrices and skew—centrosymmetric matrices of even order. This
transformation enables us to apply facts about centrosymmetric matrices (e.g. sym-
metric Toeplitz matrices), which are extensively studied, to skew—centrosymmetric
matrices (e.g. skew—symmetric Toeplitz matrices), and vice versa. It is known that
if H is a centrosymmetric matrix with 7 linearly independent eigenvectors, then
v linearly independent eigenvectors of H can be chosen to be symmetric or skew-
centrosymmetric. We present a simple short proof of this fact. We also present
several facts about the eigen structure and the singular values of centrosymmetric
matrices and skew—centrosymmetric matrices. Newman [11] is interested in the
eigen structure of regular magic squares. He made some observations on their eigen
structure. Mattingly [10] proved regular magic squares of even order are singular.
We present a new proof of that, and also we present new properties of regular magic
squares.

We employ the following notation. We denote the transpose of a matrix 4 by AT
and the Hermitian transpose by A*. We use evals(A4) to denote the eigenvalues of
A (with multiplicities). We denote v/—1 by i. Throughout this paper, we let § = %
and ¢ = ”T’l, and we let £ be the set of all n x 1 vectors that are either symmetric
or skew-symmetric. If z is an n x 1 vector, then we let 21 represent the symmetric
part of z;i.e. 1 = %(m—k Jz), where J is the n x n counteridentity matrix, and we
let ~ represent the skew—symmetric part of z; i.e. = = %(,’U — Jz). Throughout
this paper, we denote the identity matrix by I and the counteridentity matrix by
J. We refer the reader to [1] for the definitions used in this paper without being
introduced.

There are various kinds of symmetries that we will use in this paper. For conve-
nience, we summarize them in the following definition.
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Definition 1.1. Let A be an n X n matrix. Then, A is persymmetric if
JAJ = AT, doubly symmetric if it is symmetric and persymmetric, centrosym-
metric if JAJ = A, skew—centrosymmetric if JAJ = —A, and doubly skew if it is
skew—symmetric and skew—centrosymmetric.

Persymmetric matrices have applications in many fields including communication
theory, statistics, physics, harmonic differential quadrature, differential equations,
numerical analysis, engineering, sinc methods, magic squares, and pattern recogni-
tion. For applications of these matrices, see [12, 6, 5, 10, 8, 4]. Doubly skew matri-
ces have applications in harmonic differential quadrature, sinc methods, and other
fields. We note that many results for centrosymmetric and skew—centrosymmetric
matrices have been generalized to wider classes of matrices that arise in a number
of applications.

Definition 1.2. A magic square of order n is an n x n matrix whose elements are
the integers 1 through n? and such that all rows and columns, the main diagonal,
and the main counterdiagonal, have the same sum y = ’iﬁ A magic square
A = (a;j) of order n is called regular if it satisfies a; ; + an—it1,n—j41 = 0% + 1,
i=1,--n;j=1,---n.
Lemma 1.3. Let S be an n x n skew—centrosymmetric matriz. If n is even, then
S can be written as

g = [ A —-JCJ ]

Cc —-JAJ |’

where A, J and C are § x §. If, in addition, S is skew—symmetric, then A is
skew—symmetric and C is persymmetric. If n is odd, then S can be written as

A z —JCJ
S= 14T 0 7T |,

C —Jz —-JAJ
where A, J, and C are ( X (, and = and y are ( x 1. If, in addition, S is skew—
symmetric, then y = —x, A is skew—symmetric, and C is persymmetric.

A convenient summary of some classical results for centrosymmetric matrices

(mostly special cases of results proved in [3]) is given in Theorem 2.3 of [1], which
uses the notation

A x JCJ
H = [é iii] or H=|y" q 7J (1.1)
Cc Jx JAJ

for the usual partitioned form of a centrosymmetric matrix H, depending on whether
n is even or odd. Clearly if H is also symmetric then A is symmetric and C is per-
symmetric, and in the odd case z = y also.

The following fact can be found in [9].

Proposition 1.4. Let S be a skew—centrosymmetric matriz. If (A, x) is an eigen-
pair of S, then (=X, Jz) is an eigenpair of S. Moreover, X\ and —\ have the same
multiplicity.

The following theorem was proved in [10].
Theorem 1.5. Let A be a regular magic square of order n, let e be the n x 1
constant vector of ones, and let p = Tiﬁ Then
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(1) A can be written as A= Z + Lee®, where Z is skew—centrosymmetric.

(2) (u,e) is an eigenpair of A and (0,€) is an eigenpair of Z. Moreover, u is the
largest eigenvalue of A in magnitude and it is simple.

(3) All eigenpairs of A are the same as those of Z except that (0,e) is replaced
by (ue).

2. Reduction of Complex Eigen Problems

Theorem 2.1. Let H be a real centrosymmetric matriz and S a real skew-
centrosymmetric matriz, and assume all eigenvalues of H + iS are real. Then
the eigenvalues of H +1iS are the same as the eigenvalues of H + JS and the same
as the eigenvalues of H — JS. Moreover, if (\,e) is an eigenpair of H + JS, then
(M e+ide) is an eigenpair of H + 1S, and if (u, f) is an eigenpair of H — JS,
then (u, f —iJf) is an eigenpair of H +1iS.

Proof. The eigenvalues of H + JS are the same as those of H — JS, since
det(H + JS — M) = det (J(H + JS — A)J) = det(H — JS — AI). Now,
(H +1iS)(z + iy) = Mz + dy) if and only if

s w0

S H y | y |’

Theorem 2.3 of [1] applies. Therefore, the eigenvalues of H +14S are the eigenvalues
of H + JS and the eigenvalues of H — JS. But, the eigenvalues of H + JS are the
same as the eigenvalues of H — JS. Hence, A is an eigenvalue of H +4S if and only if
A is an eigenvalue of H + JS if and only if A is an eigenvalue of H — JS. Moreover,

the eigenvectors of H + 1S can be obtained from the eigenvectors of H + JS or from
the eigenvectors of H — JS. O

Thus, we can transform the complex eigen problem (H +14S)z = Az to the real
eigen problem (H + JS)w = Aw. Moreover, if \ is an eigenvalue of H £ 45, then
we can choose an eigenvector z = x + iy of A such that y = Jx or y = —Jx, where
z and y are real.

Corollary 2.2. Let H be a real centrosymmetric matriz and S a real skew-
centrosymmetric matriz, and assume all eigenvalues of H +iS are real. Then

det(H +iS) = det(H — iS) = det(H + JS) = det(H — JS).

Corollary 2.3. Let H be a real doubly symmetric matriz and S a real doubly skew
matriz. Then the four matrices H+1S and H £+ JS all have the same eigenvalues,
and hence, since they are all normal, they also have the same singular values.

Remarks. Goldstein’s (see [7]) reduction procedure follows directly from the above
results. We note that a different generalization of the results of [7] is given in [13].

Corollary 2.4. Let S be a real doubly skew matriz. Then, evals(JS) = i-evals(S).
Moreover, if X is an eigenvalue of S, then we can choose an eigenvector z = x +1iy
of X such that y =Jzx or y=—Jx.

Corollary 2.5. Let S be a real skew-centrosymmetric matriz and H a real cen-
trosymmetric matriz, and assume all eigenvalues of S + iH are pure imaginary.
Then A is an eigenvalue of S+ iH if and only if —i\ is an eigenvalue of H + JS.
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3. Properties of Centrosymmetric/Skew—centrosymmetric Matrices

3.1. Eigenvalues and eigenvectors.

Proposition 3.1. The transformation L defined by L(M) = JM 1is a bijection on
skew—centrosymmetric matrices and a bijection between doubly skew matrices and
symmetric skew—centrosymmetric matrices.

Theorem 3.2. Every symmetric skew-centrosymmetric eigenvalue/determinant/
inverse problem is equivalent to a corresponding doubly skew problem and vice versa.

Proof. If S is doubly skew (see Corollary 2.4), then evals(JS) = i - evals(S).
Now, let T' be symmetric skew—centrosymmetric. Then, JT is doubly skew. Thus,
evals(T) = evals(J(JT)) = i - evals(JT). Now let S be doubly skew. Then JS is
symmetric skew—centrosymmetric. Note that evals(S) = —i - evals(JS). Now let T'
be a nonsingular symmetric skew—centrosymmetric matrix and let H = JT. Note
that H is doubly skew and T—! = H~1J and det(T) = det(H) if n mod 4 =0 or
1, and det(T) = —det(H) if n mod 4 = 2 or 3. The rest of the proof is similar. O

The following proposition is useful if we are interested only in the magnitude of
the eigenvalues.

Proposition 3.3. If S is doubly skew or skew-symmetric centrosymmetric or sym-
metric skew-centrosymmetric, then S? is symmetric centrosymmetric.

Theorem 3.4. Let n be even, let E = [_OI ?], where I is 6 x §, and let H be an
n x n matriz. Then EH is skew—centrosymmetric (respectively centrosymmetric) if
and only if H is centrosymmetric (respectively skew—centrosymmetric).

Thus, several centrosymmetric (respectively skew—centrosymmetric) problems
(such as determinant/inverse) can be transformed to corresponding skew—
centrosymmetric (respectively centrosymmetric) problems.

It is known that if H is a centrosymmetric matrix with ~ linearly independent
eigenvectors, then v linearly independent eigenvectors of H can be chosen to be
symmetric or skew—centrosymmetric. The following theorem presents a simple short
proof of this fact.

Theorem 3.5. Let H be a centrosymmetric matriz. If (A ) is an eigenpair of
H, then either (A\,zT) or (\,z7) is an eigenpair of H.

Proof. Hzt + Hz~ = AT + Az~. Thus, HzT — Hz~ = Azt — Az~. Hence,
Hzt =Xzt and Hz™ = Az~ O

Corollary 3.6. If H is a centrosymmetric matriz with v linearly independent
eigenvectors, then v linearly independent eigenvectors of H can be chosen from E.

Corollary 3.7. Let S be a nonsingular skew—centrosymmetric matriz. If (A, x) is
an eigenpair of S, then either (A\2,z%) or (A\2,27) is an eigenpair of S?.

It is known that if A # 0 is an eigenvalue of a skew—centrosymmetric matrix,
then A can not have a symmetric or a skew—symmetric eigenvector. But, if the
matrix is also skew—symmetric, then we have the following theorem.

Theorem 3.8. Let S be an n x n real doubly skew matriz. If (A # 0,z + iy)

is an eigenpair of S, where x and y are real, then x is symmetric (respectively
skew-symmetric) if and only if y is skew—symmetric (respectively symmetric).
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Proof. Let (A = bi,z = x + iy) be an eigenpair of S, where z and y are real, and
assume b # 0. Then

Sz +iSy = —by + ibx. (3.1)
This implies
JSz +1iJSy = ibJz — bJy. (3.2)
Thus,
—-SJz —iSJy = ibJx — bJy. (3.3)

Now if x is symmetric, then
—Sz —iSJy = ibr — bJy. (3.4)
Now add (3.1) and (3.4), to get
i(Sy — SJy) = i2bx — b(y + Jy). (3.5)

Thus, —b(y + Jy) = 0. Since b # 0, it follows that Jy = —y.
Now if y is skew—symmetric, then from (3.3), we get

—-SJx +iSy = ibJz + by. (3.6)
Now subtract (3.6) from (3.1), to get
S(z + Jr) = —2by + ib(z — Jz). (3.7

Thus, b(x — Jx) = 0. Since b # 0, it follows that Jz = x. The rest of the proof is
similar. O

The following theorem shows that reversing the rows/columns of a skew—centrosymmetric
matrix results in multiplying the eigenvalues by 1.

Theorem 3.9. Let S be a skew—centrosymmetric matriz. Then evals(JS) = i -
evals(S).

Proof. The proof follows from Proposition 1.4 and the fact that (JS)? = —S2. O

More properties of (skew—)centrosymmetric matrices can be found in [2].

3.2. Singular Values.
The following result is a special case of a result proved in [3], but the statement
given there refers to eigenvalues of H*H rather than singular values of H.
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Theorem 3.10. Let H be an n X n centrosymmetric matriz and let H be written
as in Equation (1.1). Then

(i) If n is even, then the singular values of H are the nonnegative square roots
of the eigenvalues of M; and the nonnegative square roots of the eigenvalues
of M, where

My =(A—JC)*(A—JC) and My =(A+JCY (A+ JC).
(ii) If n is odd, then the singular values of H are the nonnegative square roots of

the eigenvalues of M3 and the nonnegative square roots of the eigenvalues of
My, where

Ms; = (A—JC)*(A-JC),
lg|? + 2z*x V2z*(A+ JO) +V2qyT
Vg +V2(A+ JC)*x 2gyT + (A+ JO)*(A+JC)|

Theorem 3.11. Let S be an n X n skew—centrosymmetric matriz and let S be
written as in Lemma 1.3.

My

(i) If n is even, then the singular values of S are the nonnegative square roots of
the eigenvalues of My and the nonnegative square roots of the eigenvalues of
M, where

My =(A—JC)*(A—JC) and My=(A+JC)*(A+JC).

(ii) If n is odd, then the singular values of S are the nonnegative square roots of
the eigenvalues of M3 and the nonnegative square roots of the eigenvalues of

My, where
M; = (A+JO)*(A+JO)+2my”,
M, = 2zc*x V22 (A= JO) ‘
V2(A-JC)*z (A-JC)*(A-JO)
Proof. Apply Theorem 2.3 of [1] to S*S which is centrosymmetric. O

4. Regular Magic Squares

Let A = (a;;) be a regular magic square of order n. Throughout this section,

let e be the n x 1 constant vector of ones, u = "324'", and Z = A — %eeT. Now
we discuss the effect of reversing the rows/columns of a regular magic square on its
eigenvalues.

Theorem 4.1. Let A be a regular magic square of order n and let B = JA. Then

(i) p is a simple eigenvalue of B and it is the largest eigenvalue of B in magni-
tude.

(ii) X # p is an eigenvalue of A if and only if i) is an eigenvalue of B.
(iii) (0,x) is an eigenpair of A if and only if (0,z) is an eigenpair of B.
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Proof. First, note that B = JZ + Zee’.

(i) Note that B is also a regular magic square and the trace of B is u. Thus, u is
a simple eigenvalue of B and it is the largest eigenvalue in magnitude.

(ii) Note that the eigenvalues of A are the same as the eigenvalues of Z, except that
the zero eigenvalue corresponding to the eigenvector e, is replaced by u. Note
also that B = Z' 4 Lee”, where Z' = JZ. Thus, the eigenvalues of B are the
same as the eigenvalues of Z’, except that the zero eigenvalue corresponding to
the eigenvector e, is replaced by p. But, JZ is skew—centrosymmetric. Thus,
by Theorem 3.9, evals(Z') = i - evals(Z).

(iii) Note that B = JA and A = JB.
O

Thus, if the eigenvalues of A are {u, A1,-- -, An—1}, then the previous theorem
implies that the eigenvalues of B are {u,i\1,- - -,iA,_1}. Now we use the previous
theorem to present our proof of the singularity of regular magic squares of even
order.

Corollary 4.2. FEvery regular magic square of even order is singular.

Proof. Let A be a regular magic square of even order n, let B = JA, and
let the eigenvalues of A be {u, A1, -+, Ap—1}. Then, the eigenvalues of B are
{m, i1, ,iAn_1}. Thus, det(4) = - []}2) A; and det(B) = +i-pu-[[02) Aj.

J=1

Therefore, det(B) = +idet(A). But, det(B) = £ det(A). Hence, det(4) =0. O
Now we prove that n — 1 singular values of a regular magic square A of order n

are the same as n — 1 singular values of Z.

Theorem 4.3. Let A be a regular magic square of order n and let B = JA. Then

(i) The singular values of B are the same as the singular values of A.

(ii) The singular values of A are the same as the singular values of Z, except
that one of the zero singular values of Z is replaced by u. Moreover, the
eigenvectors of AT A are the same as the eigenvectors of ZTZ.

Proof.
(i) BTB = (JA)T(JA) = ATJJA = AT A.

(i) Tt is easy to prove that (u2,e) is an eigenpair of AT A. Here is the proof
AT Ae = ATpe = pATe.

Now note that AT is a regular magic square and note also that the trace of
AT is . Thus, (u,e) is an eigenpair of AT. Hence, AT Ae = p?e. Now

ATA = (Z7 + Eee™)(2 + EeeT)
n n
2
7ZT7 + BeeTZ + EZTeeT + H—zneeT.
n n n

Now let (A, z) be an eigenpair of AT A, where A\ # p2. Then eTz = 0, and
hence,
ATAz =2"Zz + HeeTZ;c =777z
n
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