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Abstract. In this paper, we study the determinant and eigen properties of
I(−1), an important Toeplitz matrix used in Sinc methods. Some Sinc method
applications depend on the non-singularity of this matrix and on the location
of its eigenvalues. Among the theorems we prove is that I(−1) is nonsingular.
We also show that if λ is a pure imaginary eigenvalue of I(−1), then |λ| > 1

π
.

1. Introduction

Our goal in this paper is to study properties of an important Toeplitz matrix in
the theory of Sinc indefinite integration and Sinc convolution. This matrix is de-
noted as I(−1). Actually, this is an infinite family of Toeplitz matrices, generated by
an infinite sequence of diagonal coefficients; definitions are given below. Although
much is known about the global and asymptotic behavior of the eigenvalues of such
families in general, as noted in [3, p. 187], much less is known about the behavior
of individual eigenvalues.

We are particularly interested in a conjecture of Frank Stenger: I (−1) is diago-
nalizable and its eigenvalues are located in the open right half plane (see [6]). Both
properties are needed for the convergence of certain convolution algorithms and
differential equation solvers based on Sinc theory developed in [7]. As noted in [7],
it has been determined numerically that these properties hold for all such matri-
ces of order at most 512. Although this is sufficient for most practical purposes,
the general problem remains open. It follows rather easily from the definition of
I(−1) that its eigenvalues lie in the closed right half-plane. One of the results we
will prove in this paper is that if λ is a pure imaginary eigenvalue of I (−1), then
|λ| > 1

π
. It follows that I(−1) is always an invertible matrix. Moreover, we will

show that I(−1) is at least close to diagonalizable in the sense that it is a rank one
update of a highly structured skew-symmetric matrix with simple eigenvalues.

We use the following notation:

(1) The square constant matrix whose elements are all equal to ω is denoted by
by [ω].

(2) If (λ, x) is an eigenpair of the matrix A, then we write λ ∈ evals(A) and
x ∈ evecs(A). Also, we use the notation λ(A) to mean that λ is an eigenvalue
of A.
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(3) The transpose (Hermitian transpose) of the matrix A is denoted by At (A∗) and

the tuple notation x = (x1, x2, . . . xn) represents the column vector [x1, x2, . . . xn]
t

in Cn.
Next, we introduce the sinc function, Sinc methods and I (−1).

Definition 1.1. The sinc function is defined as follows:

sinc(x) =

{
sin(πx)

πx
,

1, for x = 0.
for x 6= 0

Sinc methods are a family of formulas based on the sinc function which provide
accurate approximation of derivatives, definite and indefinite integrals and convolu-
tions. These methods were developed extensively by Frank Stenger and his students
(see [8].) Sinc methods can be used to numerically solve differential equations with
boundary layers, integrals with infinite intervals or with singular integrands, and
ordinary differential equations or partial differential equations that have coefficients
with singularities. These are two numerical methods which depend on the sinc func-
tion defined above. For more information, see [4], [7], and [6]. For convolutions
and integration, the following family of matrices is especially important.

Definition 1.2. I(−1) is the n × n matrix defined as follows:

I(−1) = [ηij ]
n

i,j=1

where ηij = ei−j , ek =
1

2
+ sk, and sk =

∫ k

0

sinc(x)dx

Thus, I(−1) can be expressed in the form

I(−1) =

[
1

2

]
+ S,

where S is the following skew-symmetric Toeplitz matrix of dimension n:

S =




0 −s1 −s2 ... −sn−1

s1 0 −s1 ... −sn−2

s2 s1 0 ... −sn−3

...
...

... ...
...

sn−1 sn−2 sn−3 ... 0




Throughout this paper, S refers to the matrix defined above. Observe that S is
a real skew-symmetric Toeplitz matrix. If we want to emphasize the dimension
of S, we write Sn in place of S. Also note that the matrix [ 12 ] = 1

2uu∗, with u =

(1, 1, . . . , 1), is a rank one matrix. This decomposition of I (−1) is key to our analysis
of its behavior.

2. Localization Results for I (−1)

We have verified computationally (for a dimension up to 1000) that the eigen-
values of I(−1) lie in the open right half plane. I(−1). The fact that in all cases they
lie in the closed right half plane follows easily from the following elementary, but
key result.
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Lemma 2.1. Let (λ,x) be an eigenpair of A = [ω] + M, ω real and M skew-
Hermitian, x = (x1, x2, . . . xn) and ‖x‖2 = 1. Then

Re(λ) =
1

2

∣∣∣∣∣∣

n∑

j=1

xj

∣∣∣∣∣∣

2

and Im(λ) = x∗Mx

Proof. With the given notation we have from Ax = λx that

λ = x∗ [ω]x + x∗Mx.

However, x∗ [ω]x = ω
∣∣∣
∑n

j=1 xj

∣∣∣
2

is real and x∗Mx is pure imaginary since M is

skew-Hermitian. The result follows. �

In particular, it follows from this lemma that the real part of an eigenvalue λ of
I(−1) is nonnegative. The lemma can also be used to further localize the eigenvalues
of I(−1) as follows: the real part of each eigenvalue of I (−1) is between 0 and n/2.
To see this, note that the eigenvalues of the rank 1 matrix

[
1
2

]
are n/2 and 0 (with

multiplicity n − 1. ) Since ‖x‖2 = 1, it follows that x∗

[
1
2

]
x ≤ n/2.

Thus the issue of eigenvalues of I (−1) lying in the open half right plane is reduced
to showing that no eigenvalues of I (−1) lie on the imaginary axis. The main result
of this section shows that if there is a purely imaginary eigenvalue λ = bi of I (−1),
then |b| > 1/π.

Definition 2.2. If v = [v0, v1, ..., vn]t is an eigenvector of A, then the corresponding
eigenpolynomial is

V (z) = v0 + v1z + ... + vnzn.

A function f(x) is said to be a generator for a matrix M = [mij ] of dimension
n, if mij = ci−j , for all 1 ≤ i, j ≤ n, where

ck =
1

2π

∫ π

−π

f(x)e−ikxdx, k = 0, 1, ..., n− 1.

In the following lemma, we prove that S is the Toeplitz matrix generated by
the complex function i/x. In what follows, the integral sign denotes the Cauchy
Principal Value and not the Lebesgue integral which has been used by other authors
in dealing with generators.

Lemma 2.3.
i

x
is a generator of S.

Proof. We want f(x) =
i

x
to satisfy:

1

2π

∫ π

−π

f(x)e−irxdx =

∫ r

0

sin(πx)

πx
dx, r = 0, 1, ..., n− 1.

Now we claim that

i

2π

∫ π

−π

cos(rx) − i sin(rx)

x
dx =

∫ r

0

sin(πx)

πx
dx. (1)
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First notice that if r = 0, then the left hand side of (1) is i
2π

∫ π

−π
dx
x

, which is equal

to zero. And if r 6= 0, then cos(rx)
x

is odd. So the left hand side of (1) is now

i

2π

∫ π

−π

−i
sin(rx)

x
dx, (2)

which is an ordinary integral since the integrand is continuous. In fact, the integrand
is even. Thus, (2) becomes

1

π

∫ π

0

sin(rx)

x
dx (3)

Now substitute x = π
r
y in (3), to get

∫ r

0

sin(πy)

πy
dy,

which proves the lemma. �

To study the determinant and eigen properties of S, it suffices to study the
matrix T ≡ −iS instead. T is generated by 1/x. It is Hermitian and has the
advantage of being generated by a real-valued function. These facts are helpful in
the following theorem, the proof of which is modeled along the lines of Theorem
2.1 of [9].

Theorem 2.4. If µ is a pure imaginary eigenvalue of I (−1), then |µ| > 1
π
.

Proof. Let (µ, u) be an eigenpair of I (−1), where µ = ib, b is real, and without loss

of generality, assume that b is nonnegative. It follows from the identity I(−1)u = ibu
that

u∗

[
1

2

]
u + u∗Su = ib ‖u‖

2
.

Since the right hand side and u∗Su are purely imaginary, it follows that 0 =

u∗

[
1
2

]
u = 1

2

∣∣∣
∑n

j=1 uj

∣∣∣
2

. Therefore
[

1
2

]
u = 0, from which it follows that (µ, u)

is also an eigenpair of S and (0, u) is an eigenpair of [ 12 ]. This means that (b, u) is
an eigenpair of T. Now if U(z) is the eigenpolynomial associated with the eigenvec-
tor u, then it follows that 1 is a zero of U(z). For the fact that (0, u) is an eigenpair
of [ 12 ] implies that the sum of the coordinates of u is zero, which means that the

sum of the coefficients of U(z) is zero. Thus, we can write U(z) = (z − 1)Û(z), for

some polynomial Û(z). Now let V (z) be a polynomial corresponding to a vector v

and which has -1 as a zero. Then V (z) can be factored as V (z) = (z + 1)V̂ (z).

Thus, U(z)V (z) = (z − 1)(z + 1)Û(z)V̂ (z). Now notice that if z = eiθ, then

(z − 1)(z + 1) = 2i sin(θ). Since f(θ) = 1/θ is a generator of T , it follows that

2i

2π

∫ π

−π

sin(θ)

θ
Û(eiθ)V̂ (eiθ)dθ = 〈Tu, v〉 = 〈λu, v〉

=
2iλ

2π

∫ π

−π

sin(θ)Û (eiθ)V̂ (eiθ)dθ.

Thus, ∫ π

−π

(
sin(θ)

θ
− λ sin(θ)

)
Û(eiθ)V̂ (eiθ)dθ = 0.
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Observe that V̂ (z) can be chosen to be any polynomial of degree at most n − 1.

Make the choice V̂ (z) = Û(z) to obtain
∫ π

−π

(
sin(θ)

θ
− b sin(θ)

)
|Û(eiθ)|2dθ = 0.

Since u is an eigenvector, the polynomial Û(z) is nonzero. It follows that the
integrand above is positive on the open interval (−π, 0). Moreover, the factor

sin(θ)|Û (eiθ)|2 is also positive on the interval (0, π). It follows that 1
θ
− b < 0

for some θ in the interval (0, π). This implies that b > 1/π and completes the
proof. �

It follows from Theorem 2.4 that zero is excluded as a possible eigenvalue of I (−1).

Corollary 2.5. For all dimensions n the matrix I (−1) is nonsingular.

3. Diagonalizability of Sn

The principal theorem of this section is an analogue to Theorem 2.2 of [9].
Trench’s theorem is valid only for real-valued Lebesgue-integrable functions on
(−π,π), which are not constant on a set of measure 2π, so it cannot be applied
to f(x) = 1/x and hence, to the matrix generated by −if(x). In the following the-
orem, we shall use the notation Sn instead of S to emphasize the dimension (which
is n), and use Tn to represent −iSn.

Theorem 3.1. The eigenvalues of −iSn = Tn(tr−s)
n
r,s=1 are simple, where

tk =
1

2π

∫ π

−π

1

θ
e−ikθdθ, k = 0, 1, ..., n− 1. (4)

Proof. Let f(x) = 1/x. First, note that f(x) is a generator of Tn. We will show
that if λr is an eigenvalue of Tn of multiplicity greater than or equal to 2, then

f(x) − λr must change sign at least 3 times in (−π, π). Clearly
1

x
− λr does not

change sign more than once in (−π, π) for any choice of λr. This will imply that all
eigenvalues of Tn are simple.

Note that all of the following integrals are finite, because the Cauchy principal
part of any integral whose integrand is a product of a polynomial and 1/θ is finite.

Now for each vector v = [v1, v2, ..., vn]t in Cn, associate the polynomial

V (z) = [1, z, z2, ..., zn−1]v =
n∑

j=1

vjz
j−1.

If u and v are in Cn, then the standard inner product on Cn satisfies

〈u, v〉 =
1

2π

∫ π

−π

U(z)V (z)dθ, (5)

where z = eiθ.
Also from (4), we obtain that

〈Tnu, v〉 =
1

2π

∫ π

−π

1

θ
U(z)V (z)dθ. (6)
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Now let λ1 ≤ λ2 ≤ ... ≤ λn be the eigenvalues of the Hermitian matrix Tn, with
corresponding eigenvectors x1, x2, ..., xn, and corresponding eigenpolynomials

Xi(z) = [1, z, ..., zn−1]xi, 1 ≤ i ≤ n.

From (5) we have

1

2π

∫ π

−π

Xi(z)Xj(z)dθ = δij , 1 ≤ i, j ≤ n. (7)

From (6) we also have

1

2π

∫ π

−π

1

θ
Xi(z)Xj(z)dθ = δijλi, 1 ≤ i, j ≤ n, (8)

where δij is the Kronecker delta. Thus, if λr is an eigenvalue of multiplicity one,
then we claim that f(θ) − λr must change sign at some point. This point must be
1/λr (if λr 6= 0) or 0 (if λr = 0). Notice that multiplying (7) by λr, and taking
i = j = r, yields

1

2π

∫ π

−π

λr|Xr(z)|2dθ = λr. (9)

And by taking i = j = r in (8), we get

1

2π

∫ π

−π

1

θ
|Xr(z)|2dθ = λr. (10)

Now subtract (9) from (10) to obtain that

1

2π

∫ π

−π

(
1

θ
− λr

)
|Xr(z)|2dθ = 0.

Now if f(θ) − λr is of constant sign in (−π, π), say it is positive, then the integral
∫ π

−π

(
1

θ
− λr

)
|Xr(z)|2dθ

should be positive. This is impossible, which proves our assertion about the sign
change of f(θ) − λr .

Next suppose that m ≥ 2. The expression (1 − θλr)/θ changes sign only at θ1

and θ2, where θ1 = 0 and θ2 = λr. We will show that this assumption (that m ≥ 2)
leads to a contradiction. Notice that it suffices to handle the case when λr ≥ 0,
since nonzero eigenvalues of Sn are of the form ia, a 6= 0, a ∈ R, and they occur in
pairs. Therefore, if −a (assume a > 0) is an eigenvalue of Tn of multiplicity greater
than or equal to 2, then a is an eigenvalue of multiplicity greater than or equal to
2.

So assume that λr ≥ 0, and define

g(θ) =
1

2π
(f(θ) − λr) . (11)

We assert that the function h(θ) defined by

h(θ) = g(θ) sin

(
θ − θ1

2

)
sin

(
θ − θ2

2

)
(12)

does not change sign in (−π, π).
To see why this is true, notice first that since θ and θi, i = 1, 2, are all in (−π, π),

then θ−θi

2 is also in (−π, π). Thus, sin( θ−θi

2 ) defined on (−π, π) can change sign
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only when θ−θi

2 = 0; i.e. when θ = θi, for i = 1, 2. But, g(θ) changes sign only
at these points. Consequently, h(θ) can change sign only at these points also. To
show that h does not change sign at these two points, it suffices to prove that the
sign of h(θ) does not change in a small neighborhood of θi, for i = 1, 2. Notice that
for each i, we can choose this neighborhood not to include θj , for j 6= i.

Now write h as

h(θ) =
1

2π
h1(θ)h2(θ).

where

h1(θ) =
sin(θ/2)

θ
and h2(θ) = (1 − θλr)

(
sin

(
θ − θ2

2

))
.

Recall that θ1 = 0 and θ2 = λr. First, let check the sign of h about θ1. But, h1

does not change sign at θ1, nor does h2. Thus, h does not change sign at θ1. It
remains to check the sign of h about θ2. Since h1 does not change sign at θ2, we
need only to check the sign of h2 about θ2. But, when θ < θ2, we have 1− θλr > 0
and sin ((θ − θ2)/2) < 0 . Thus when θ < θ2, h(θ) is negative. On the other hand,
when θ > θ2, 1 − θλr < 0, and sin((θ − θ2)/2) > 0. Thus, when θ > θ2, h(θ) is
negative. Therefore, h does not change sign at θ2, and hence h does not change
sign in (−π, π).

Now suppose that λr = λr+1 is of multiplicity greater than or equal to 2. For

i = r, r + 1 and 1 ≤ j ≤ n, we have that
∫ π

−π
g(θ)Xi(z)Xj(z)dθ = 0, because

∫ π

−π

g(θ)Xi(z)Xj(z)dθ =
1

2π

∫ π

−π

f(θ)Xi(z)Xj(z)dθ −
λr

2π

∫ π

−π

Xi(z)Xj(z)dθ

= λiδij − λrδij

= (λi − λr)δij .

Now if i = r, then the above integral is zero. It is also zero if i = r + 1, because
λr+1 = λr . Therefore,

∫ π

−π

g(θ)p(z)Xj(z)dθ = 0, 1 ≤ j ≤ n,

where

p(z) = c0Xr(z) + c1Xr+1(z)

and c0 and c1 are constants, which are not both zero, and which satisfy

c0Xr(1) + c1Xr+1(1) = 0.

This means that p(z) is a nonzero polynomial.

Now set Q(z) =
p(z)(z − eiθ2)

z − 1
, which is a polynomial of degree less than or equal

to n − 1, and obtain that
∫ π

−π

g(θ)p(z)Q(z)dθ = 0. (13)

Thus, ∫ π

−π

g(θ)|p(z)|2
(

z − e−iθ2

z − 1

)
dθ = 0.
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If we let

g1(θ) = g(θ)

∣∣∣∣∣

∑1
l=0 clXr+l(z)

z − 1

∣∣∣∣∣

2

,

then the above equation becomes
∫ π

−π

g1(θ)(z − 1)(z − e−iθ2)dθ = 0. (14)

Now if z = eiθ, then

(z − 1)(z − e−iθ2) = 4e−i
θ2
2 sin

(
θ

2

)
sin

(
θ − θ2

2

)
.

Notice that

eiθeiφ = ei( θ+φ
2 )

(
ei( θ−φ

2 ) − e−i( θ−φ
2 )

)
= 2ei( θ+φ

2 ) sin(θ − φ).

Therefore, (14) becomes

4

∫ π

−π

g1(θ)

(
e−i

θ2
2 sin

(
θ

2

)
sin

(
θ − θ2

2

))
dθ = 0. (15)

Thus, ∫ π

−π

g1(θ) sin

(
θ

2

)
sin

(
θ − θ2

2

)
dθ = 0. (16)

This implies that
∫ π

−π

α(z)g(θ)

(
sin

(
θ

2

)
sin

(
θ − θ2

2

))
dθ = 0.

where

α(z) =

∣∣∣∣
p(z)

z − 1

∣∣∣∣
2

.

Therefore, ∫ π

−π

α(z)h(θ)dθ = 0.

Since h does not change sign in (−π, π) and α(z) ≥ 0, then it must be that p(z)/(z−
1) ≡ 0. Therefore, p ≡ 0, a contradiction proving the multiplicity of any eigenvalue
is 1. �

The equalities S = T and I(−1) = [ 12 ] + S show that I(−1) is at most a rank one
update away from a matrix with simple eigenvalues, as stated in the introduction.

Corollary 3.2. The matrix I(−1) can be expressed as the sum of a rank one matrix
and a skew-symmetric matrix with simple eigenvalues.

We conclude by relating the determinants of S and I (−1). The result that we
need can be phrased in a somewhat more general context.

Theorem 3.3. Let M be a non-singular real skew-Hermitian matrix and A =
[ω] + M, where ω is a nonzero real number. Then det(A) = det(M).
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Proof. The rank one matrix M−1[ω] has at most one nonzero eigenvalue. which
is real. Hence all eigenvalues of M−1[ω] are real. Let (λ, x) be an eigenpair for
this matrix. From M−1[ω]x = λx we see that x∗[ω]x = λx∗Mx. The right hand
side of this identity is pure imaginary and the left hand side real, so each is zero.
Thus [ω]x = 0, so that 0 = [ω]x = λMx. Since M is non-singular, it follows that
λ = 0. Therefore all eigenvalues of M−1[ω] are zero. Thus the only eigenvalues of
I + M−1[ω] are 1 and det(A) = det(M(I + M−1[ω])) = det(M) · 1. �

Corollary 3.4. Let n be even. Then det(I
(−1)
n ) = det(Sn).

Proof. All eigenvalues of Sn occur in signed pairs ±ib, where b is real. If zero were
an eigenvalue of Sn, it would be repeated, which does not occur by Theorem 3.1.
Therefore, Sn is nonsingular and Theorem 3.3 applied to the equality I (−1) = [ 12 ]+S
gives the desired result. �
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