
CANADIAN APPLIED
MATHEMATICS QUARTERLY
Volume 12, Number 3, Fall 2004

CLASSIC TWO-STEP DURBIN-TYPE AND

LEVINSON-TYPE ALGORITHMS FOR

SKEW-SYMMETRIC TOEPLITZ MATRICES

IYAD T. ABU-JEIB

ABSTRACT. We present efficient classic two-step Durbin-
type and Levinson-type algorithms for even order skew-symmetric
Toeplitz matrices.

1 Introduction We extend the classic Durbin’s algorithm and the
classic Levinson’s algorithm for symmetric Toeplitz matrices to skew-
symmetric Toeplitz matrices. Levinson’s algorithm is for solving the
system Ax = b, where A is an n × n real symmetric Toeplitz matrix
(with some restrictions on A) and x and b are n × 1 vectors. In our
algorithms, we present an O(n2) method to solve HX = B, where H
is a finite order n × n real skew-symmetric Toeplitz matrix (with some
restrictions) and B is n×2 (to solve Hx = b, where b is n×1, simply let
b be one of the columns of B). This method can be used to invert non-
singular skew-symmetric Toeplitz matrices. Our algorithms are different
than the algorithms presented in [4]. They are simple and they use very
similar techniques to those used by Durbin and Levinson. They are easy
to derive and easy to implement. They are also two-step. In addition,
the restrictions we place on the matrix of coefficients are less than the
restrictions in Durbin’s algorithm and in Levinson’s algorithm. Levin-
son’s algorithm and a two-step version of it can be found in [2, 6, 7]. We
recall here that well-known researchers thought that the classic Durbin’s
algorithm and the classic Levinson’s algorithm can not be generalized
to skew-symmetric Toeplitz matrices. But, we managed to generalize
them. Our algorithms were tested on skew-symmetric Toeplitz matrices

that appear in Sinc methods. They were tested on matrix Sn of I
(−1)
n ,

AMS subject classification: 65F05, 15A57.
Keywords: skew-symmetric Toeplitz matrix, Levinson algorithm, Durbin algo-

rithm, skew-centrosymmetric.
Copyright c©Applied Mathematics Institute, University of Alberta.

241

242 IYAD T. ABU-JEIB

where
I(−1)
n = [ηij]

n

i,j=1

where ηij = ei−j , ek = 1
2 + sk and sk =

∫ k

0 sinc(x) dx, where

sinc(x) =







sin(πx)

πx
for x 6= 0

1 for x = 0.

Thus, I
(−1)
n can be expressed in the form

I(−1)
n =

[

1

2

]

+ Sn,

where [1/2] is the n×n matrix whose elements are all equal to 1/2. We

tested the algorithms also on matrix I
(1)
n of Sinc methods. I

(1)
n is an

n × n skew-symmetric Toeplitz matrix defined as follows

I(1)
n =



























0 −1 1
2 . . . (−1)n−1

n−1

1 0 −1 . . . (−1)n−2

n−2

− 1
2 1 0 . . . (−1)n−3

n−3

...
...

... . . .
...

(−1)n

n−1
(−1)n−1

n−2
(−1)n−2

n−3 . . . 0



























.

Many Sinc methods are dependent on Sinc matrices. For more about the
matrices of Sinc methods and about Sinc methods, see [1, 3, 5, 8, 9, 10].

2 Preliminaries We employ the following notation. We denote
the transpose of a matrix A by AT . As usual, Ik denotes the k × k
identity matrix. When counting flops, we treat addition/subtraction
the same as multiplication/division. By the main counterdiagonal (or
simply counterdiagonal) of a square matrix we mean the positions which
proceed diagonally from the last entry in the first row to the first entry
in the last row.

Definition 2.1. The counteridentity matrix, denoted J , is the square
matrix whose elements are all equal to zero except those on the coun-
terdiagonal, which are all equal to 1.

SKEW-SYMMETRIC TOEPLITZ MATRICES 243

We note that multiplying a matrix A by J from the left results in
reversing the rows of A and multiplying A by J from the right results in
reversing the columns of A. Throughout this paper, we will denote the
k × k counteridentity matrix by Jk. Note that multiplying a matrix or
a vector by J does not contribute to the running time.

Definition 2.2. A matrix A is skew-centrosymmetric if JAJ = −A,
and Toeplitz if the elements along each diagonal are equal.

Note that skew-symmetric Toeplitz matrices are skew-symmetric skew-
centrosymmetric. Note also that if Tn is an n × n skew-symmetric
Toeplitz matrix, then Tn has the following form

Tn =















0 σ1 σ2 . . . σn−1

−σ1 0 σ1 . . . σn−2

−σ2 −σ1 0 . . . σn−3

...
...

... . . .
...

−σn−1 −σn−2 −σn−3 . . . 0















.

The above form is the form we will refer to in the next section. Note
that the first row (excluding the first element) generates (determines)
Tn, i.e., the vector hn = [σ1, σ2, · · · , σn−1]

T is a generator of Tn. We
will assume that {Tn}, n ∈ 2Z

+, is a family of real skew-symmetric
Toeplitz matrices. Note that to solve TnX = B, where Tn is n × n and
B is n × 2, we need Tn+2. To be specific, we need only the elements σn

and σn+1 from the generator hn+2 of Tn+2. This is not a shortcoming
of the algorithm because most of the skew-symmetric Toeplitz matrices
that arise in applications are of the form we mentioned above (i.e., they
appear as families/sequences of matrices) as it is the case with the skew-
symmetric Toeplitz matrices that appear in Sinc methods. For example,

in matrix Sn of I
(−1)
n described in the introduction, σk =

∫

−k

0 sinc(x)dx,

and in matrix I
(1)
n , σk = (−1)k/k. Thus, σk is defined for all k ∈ Z

+.
Also, we recall that Durbin and Levinson used similar teqchniques in
their algorithms; i.e., to solve Hnx = b, where Hn is an n × n real
symmetric Toeplitz matrix, they use Hn+1.

Definition 2.3. Let A be an n×n matrix. The leading principal matrix

of A of order k is the matrix formed from A by deleting the last n − k
columns and the last n − k rows of A.

244 IYAD T. ABU-JEIB

3 Algorithms for skew-symmetric Toeplitz matrices Through-
out the rest of the paper, let k be even, and let Tk be a k × k real
skew-symmetric Toeplitz matrix and assume Ti, ∀i ∈ {2, 3, · · · , k} ∩ 2Z,
is nonsingular (i.e., all leading principal matrices of Tk of even order are
nonsingular). We recall that Durbin and Levinson have stronger restric-
tions in their algorithms. We note also that it happens sometimes that
all even-order matrices of a family of skew-symmetric Toeplitz matrices

are non-singular as it is the case with matrix Sn of I
(−1)
n and matrix I

(1)
n .

For the proofs, see [1, 3]. Note that odd-order skew-symmetric (and
odd-order skew-centrosymmetric matrices) are singular, and hence, it is
essential to have a two-step algorithm that skips the odd-order matrices.
Thus, our algorithm is a two-step algorithm because it moves from order
k to order k + 2 instead of moving from order k to order k + 1. Now
note that Tk+2 can be written as

Tk+2 =

[

Tk JkRk

−RT
k Jk T2

]

,

where

Rk =











σ1 σ2

σ2 σ3

...
...

σk σk+1











.

Once again, in each step we will move from Tk to Tk+2 instead of Tk+1.
We start with T2. Now, we extend Durbin’s algorithm. If we know the
solution of TkY = Rk, where Y is k × 2, then we can know the solution
of

[

Tk JkRk

−RT
k Jk T2

] [

Z
W

]

=

[

Rk

Sk

]

,

where Z is k × 2, W is 2 × 2, and Sk =

[

σk+1 σk+2

σk+2 σk+3

]

. Note that Tk

and Jk are k × k, Rk and Z are k × 2, and T2 and Sk are 2 × 2. Now
note that

TkZ + JkRkW = Rk and − RT
k JkZ + T2W = Sk.

Thus, Z = Y + JkY W and W = (T2 − RT
k Y)−1(Sk + RT

k JkY). Note
that T2 − RT

k Y is nonsingular because

HT
k Tk+2Hk =

[

Tk 0

Y T JkTk − RT
k Jk T2 − RT

k Y

]

,

SKEW-SYMMETRIC TOEPLITZ MATRICES 245

where

Hk =

[

Ik JkY
0 I2

]

.

(Note that TkJkY + JkRk = 0 and Y T JkTkJkY + Y T Rk = 0 also.)
Hence, det(Tk+2) = det(Tk) ·det(T2−RT

k Y). Now since we are assuming
Tk+2 is nonsingular, then T2 − RT

k Y is nonsingular. Thus, our O(n2)
algorithm is (we note that the inverse we have to find in this algorithm
and in all other algorithms is for a 2 × 2 matrix):

Algorithm 1 (Classic Durbin-type algorithm for skew-sym-
metric Toeplitz matrices).

Input: n (an even positive integer), σ = [σ1 σ2 · · · σn+1]
T (a gener-

ator of a real skew-symmetric Toeplitz matrix Tn+2).

Y2 =

[

−σ2/σ1 −σ3/σ1

1 σ2/σ1

]

T2 =

[

0 σ1

−σ1 0

]

for k = 2, · · · , n − 2, step 2

Let Jk be the counteridentity matrix of order k.

Rk =











σ1 σ2

σ2 σ3

...
...

σk σk+1











Sk =

[

σk+1 σk+2

σk+2 σk+3

]

Pk = (T2 − RT
k Yk)−1

Wk = Pk(Sk + RT
k JkYk)

Zk = Yk + JkYkWk

Yk+2 =

[

Zk

Wk

]

end for

Output: Yn (the solution of TnYn = Rn, where Tn is the skew-
symmetric Toeplitz matrix whose generator is [σ1 σ2 · · · σn−1]

T and
Rn is as before).

246 IYAD T. ABU-JEIB

It is easy to see that the running time of the previous algorithm is
∑n−2

k=2 24k = 6n2 + O(n).

Remark. We remind the reader that we define a flop to be one addition
or one multiplication, while some people define it to be one addition
and one multiplication. If we define the flop to be one addition and one
multiplication, then the running time of the previous algorithm will be
almost half of the running time we have above.

Now we derive a Levinson-type algorithm. Let

B =











b1 c1

b2 c2

...
...

bk ck











.

Assume we have the solution of TkX = B, where X is k×2, and assume
also we have the solution (from the previous algorithm) of TkY = Rk,
where Y is k × 2. Now, we want to solve the next even higher order
equation:

[

Tk JkRk

−RT
k Jk T2

][

V
M

]

=

[

B
C

]

,

where V is k× 2, M and C are 2× 2, and C =

[

bk+1 ck+1

bk+2 ck+2

]

. Then, we

will have

TkV + JkRkM = B, − RT
k JkV + T2M = C.

Thus, V = X + JkY M and M = (T2 −RT
k Y)−1(C + RT

k JkX). Now, all
we need to do is to execute the steps above in parallel with the steps for
solving TkY = Rk. Therefore, our O(n2) algorithm is the following:

Algorithm 2 (Classic Levinson-type algorithm for skew-sym-
metric Toeplitz matrices).

Input: n (an even positive integer), b = [b1 b2 · · · bn]T , c =
[c1 c2 · · · cn]T (b and c are the vectors of constant terms),
σ = [σ1 σ2 · · · σn+1]

T (a generator of a real skew-symmetric Toeplitz
matrix Tn+2).

Y2 =

[

−σ2/σ1 −σ3/σ1

1 σ2/σ1

]

SKEW-SYMMETRIC TOEPLITZ MATRICES 247

T2 =

[

0 σ1

−σ1 0

]

X2 =

[

−b2/σ1 −c2/σ1

b1/σ1 c1/σ1

]

for k = 2, · · · , n − 2, step 2

Let Jk be the counteridentity matrix of order k.

Rk =











σ1 σ2

σ2 σ3

...
...

σk σk+1











Sk =

[

σk+1 σk+2

σk+2 σk+3

]

Pk = (T2 − Rk
T Yk)−1

Wk = Pk(Sk + RT
k JkYk)

Zk = Yk + JkYkWk

Mk = Pk(Ck + RT
k JkXk)

Vk = Xk + JkYkMk

Yk+2 =

[

Zk

Wk

]

Xk+2 =

[

Vk

Mk

]

end for

Output: Xn (the solution of TnXn = Bn, where Bn = [b, c]
and Tn is the skew-symmetric Toeplitz matrix whose generator is
[σ1 σ2 · · · σn−1]

T).

It is easy to see that the running time of the previous algorithm
is

∑n−2
k=2 40k = 10n2 + O(n). Note that our algorithm solves for two

vectors of constant terms at once. That is, if we want to solve Tnx = b
and Tny = c, where b and c are n × 1 and n is even, then we solve the
system TnZ = D, where D is an n × 2 matrix whose first column is b
and second column is c. Then, x will be the first column of Z and y the
second column. Solving TnZ = D by our method costs 10n2 + O(n).
Thus, obtaining x costs 5n2 + O(n) and obtaining y has the same cost.

248 IYAD T. ABU-JEIB

4 Examples In the following example we solve (calculations are
done by Octave which is a math-oriented programming language similar
to MATLAB) S6X = D, where S6 is the 6×6 matrix of I(−1) mentioned
in the introduction, i.e.,

S6 =

2

6

6

6

6

6

6

4

0.00000 −0.58949 −0.45141 −0.53309 −0.47497 −0.52011

0.58949 0.00000 −0.58949 −0.45141 −0.53309 −0.47497

0.45141 0.58949 0.00000 −0.58949 −0.45141 −0.53309

0.53309 0.45141 0.58949 0.00000 −0.58949 −0.45141

0.47497 0.53309 0.45141 0.58949 0.00000 −0.58949

0.52011 0.47497 0.53309 0.45141 0.58949 0.00000

3

7

7

7

7

7

7

5

,

D =

2

6

6

6

6

6

6

4

1 −3

2 −7

3 6

4 4

5 −8

6 2

3

7

7

7

7

7

7

5

,

and the generator σ of S8 is
ˆ

−0.58949 −0.45141 −0.53309 −0.47497 −0.52011 −0.48321 −0.51442
˜

T
.

Note that the inputs to the algorithm are 6, b, c, and σ, where b is the
first column of D and c is the second column of D.

Initializations:

Y2 =

[

−0.76577 −0.90433
1.00000 0.76577

]

T2 =

[

0.00000 −0.58949
0.58949 0.00000

]

X2 =

[

3.3928 −11.8747
−1.6964 5.0891

]

Iterations:
k = 2:

R2 =

[

−0.58949 −0.45141
−0.45141 −0.53309

]

S2 =

[

−0.53309 −0.47497
−0.47497 −0.52011

]

C2 =

[

3 6
4 4

]

SKEW-SYMMETRIC TOEPLITZ MATRICES 249

P2 =

[

−3.0088e− 17 1.2872e + 00
−1.2872e + 00 9.1969e− 17

]

W2 =

[

−0.66695 −0.49387
1.00000 0.66695

]

Z2 =

[

−0.66695 −0.88747
0.60640 0.54082

]

M2 =

[

3.8063 10.3397
−3.1773 −10.7611

]

V2 =

[

4.7659 −9.7754
−1.7378 6.9029

]

Y4 =









−0.66695 −0.88747
0.60640 0.54082

−0.66695 −0.49387
1.00000 0.66695









X4 =









4.7659 − 9.7754
−1.7378 6.9029

3.8063 10.3397
−3.1773 −10.7611









k = 4:

R4 =









−0.58949 −0.45141
−0.45141 −0.53309
−0.53309 −0.47497
−0.47497 −0.52011









S4 =

[

−0.52011 −0.48321
−0.48321 −0.51442

]

C4 =

[

5 −8
6 2

]

P4 =

[

−1.1544e− 16 1.2270e + 00
−1.2270e + 00 8.3570e− 17

]

W4 =

[

−0.63828 −0.42637
1.00000 0.63828

]

250 IYAD T. ABU-JEIB

Z4 =









−0.63828 −0.88814
0.53823 0.50995

−0.51318 −0.40723
0.53823 0.38486









M4 =

[

4.6033 3.8665
−4.6840 6.5775

]

V4 =









6.2453 − 1.5221
−2.4946 1.0757

4.0645 16.2416
−2.0906 −19.1772









Y6 =

















−0.63828 −0.88814
0.53823 0.50995

−0.51318 −0.40723
0.53823 0.38486

−0.63828 −0.42637
1.00000 0.63828

















X6 =

















6.2453 − 1.5221
−2.4946 1.0757

4.0645 16.2416
−2.0906 −19.1772

4.6033 3.8665
−4.6840 6.5775

















End of Iterations
The solution X is

















6.2453 − 1.5221
−2.4946 1.0757

4.0645 16.2416
−2.0906 −19.1772

4.6033 3.8665
−4.6840 6.5775

















.

We note that the solution above is exactly the same as the solution
obtained from solving the system using Maple. The two solutions even
match for a much larger number of decimal places.

As another example, we solve the system I
(1)
8 X = D, where D is an

8× 2 matrix whose first solumn is the 8× 1 zero vector (call this vector

b) and whose second column is c = I
(1)
8 e, where e is the 8 × 1 vector of

SKEW-SYMMETRIC TOEPLITZ MATRICES 251

ones; i.e., (rounded up to 16 digits)

c =

























−0.759523809523809
0.383333333333333

−0.283333333333333
0.250000000000000

−0.250000000000000
0.283333333333333

−0.383333333333333
0.759523809523809

























.

Note that D was chosen so that the true solution is the matrix whose
first column is the 8 × 1 zero vector and whose second column is the
8× 1 vector of ones. Solving the system by our algorithm with input 8,
b, c, and σ, where

σ =





























− 1
1/2

−1/3
1/4

−1/5
1/6

−1/7
1/8

−1/9





























,

gives us the solution
























0.000000000000000 1.000000000000000
0.000000000000000 1.000000000000000
0.000000000000000 1.000000000000000
0.000000000000000 1.000000000000000
0.000000000000000 1.000000000000000
0.000000000000000 1.000000000000000
0.000000000000000 1.000000000000000
0.000000000000000 1.000000000000000

























.

5 Improved algorithms First, we present a 4n2 + O(n) Durbin-
type algorithm. The idea here is to reduce the cost of computing RT

k Yk.
Here we will use the same notation (but we will replace Y by Yk, Z by
Zk and W by Wk) we used when we derived the first two algorithms.
Now consider

RT
k Yk =

[

RT
k−2 ST

k−2

]

[

Zk−2

Wk−2

]

.

252 IYAD T. ABU-JEIB

But, Zk−2 = Yk−2 + Jk−2Yk−2Wk−2. Thus,

RT
k Yk = RT

k−2Yk−2 + (T2 − RT
k−2Yk−2)W

2
k−2.

Therefore, we can use the previously computed values of W and RT Y
to compute the new value of RT Y which we will call E.

Algorithm 3 (Improved classic Durbin-type algorithm for
skew-symmetric Toeplitz matrices).

Input: n (an even positive integer), σ = [σ1 σ2 · · · σn+1]
T (a gener-

ator of a real skew-symmetric Toeplitz matrix Tn+2).

Y2 =

[

−σ2/σ1 −σ3/σ1

1 σ2/σ1

]

T2 =

[

0 σ1

−σ1 0

]

R2 =

[

σ1 σ2

σ2 σ3

]

E = RT
2 Y2

W =

[

0 0
0 0

]

for k = 2, · · · , n − 2, step 2

Let Jk be the counteridentity matrix of order k.

Rk =











σ1 σ2

σ2 σ3

...
...

σk σk+1











Sk =

[

σk+1 σk+2

σk+2 σk+3

]

E = E + (T2 − E)W 2

Pk = (T2 − E)−1

W = Pk(Sk + RT
k JkYk)

Zk = Yk + JkYkW

Yk+2 =

[

Zk

W

]

SKEW-SYMMETRIC TOEPLITZ MATRICES 253

end for

Output: Yn (the solution of TnYn = Rn, where Tn is the skew-
symmetric Toeplitz matrix whose generator is [σ1 σ2 · · · σn−1]

T and
Rn is as before).

It is easy to see that the running time of the previous algorithm is
∑n−2

k=2 16k = 4n2 + O(n).

Algorithm 4 (Improved classic Levinson-type algorithm for
skew-symmetric Toeplitz matrices).

Input: n (an even positive integer), b = [b1 b2 · · · bn]T ,
c = [c1 c2 · · · cn]T (b and c are the vectors of constant terms),
σ = [σ1 σ2 · · · σn+1]

T (a generator of a real skew-symmetric Toeplitz
matrix Tn+2).

Y2 =

[

−σ2/σ1 −σ3/σ1

1 σ2/σ1

]

T2 =

[

0 σ1

−σ1 0

]

X2 =

[

−b2/σ1 −c2/σ1

b1/σ1 c1/σ1

]

R2 =

[

σ1 σ2

σ2 σ3

]

E = RT
2 Y2

W =

[

0 0
0 0

]

for k = 2, · · · , n − 2, step 2

Let Jk be the counteridentity matrix of order k.

Rk =











σ1 σ2

σ2 σ3

...
...

σk σk+1











Sk =

[

σk+1 σk+2

σk+2 σk+3

]

E = E + (T2 − E)W 2

254 IYAD T. ABU-JEIB

Pk = (T2 − E)−1

W = Pk(Sk + RT
k JkYk)

Zk = Yk + JkYkW

Mk = Pk(Ck + RT
k JkXk)

Vk = Xk + JkYkMk

Yk+2 =

[

Zk

W

]

Xk+2 =

[

Vk

Mk

]

end for

Output: Xn (the solution of TnXn = Bn, where Bn = [b, c] and
Tn is the skew-symmetric Toeplitz matrix whose generator is
[σ1 σ2 · · · σn−1]

T).

It is easy to see that the running time of the previous algorithm is
∑n−2

k=2 32k = 8n2 +O(n). Note that our algorithm solves for two vectors
of constant terms at once. I.e. if we want to solve Tnx = b and Tny = c,
where b and c are n×1 and n is even, then we solve the system TnZ = D,
where D is an n × 2 matrix whose first column is b and second column
is c. Then, x will be the first column of Z and y the second column.
Solving TnZ = D by our method costs 8n2 + O(n). Thus, obtaining x
costs 4n2 + O(n) and obtaining y has the same cost.

Solving the first system we solved in Section 4 by the improved
Levinson-type algorithm (using Octave) gives the same solution we got
in that section. All variables we get here are the same as those in that
example except that we do not have Wk here, and we have the following
additional ones.

In the initializations part, we have

R2 =

[

−0.58949 −0.45141
−0.45141 −0.53309

]

E =

[

−5.5511e− 17 1.8742e− 01
−1.8742e− 01 1.8160e− 17

]

W =

[

0 0
0 0

]

.

SKEW-SYMMETRIC TOEPLITZ MATRICES 255

When k = 2 in the iterations, we get

E =

[

−5.5511e− 17 1.8742e− 01
−1.8742e− 01 1.8160e− 17

]

W =

[

−0.66695 −0.49387
1.00000 0.66695

]

.

When k = 4 in the iterations, we get

E =

[

−5.8234e− 17 2.2553e− 01
−2.2553e− 01 1.5619e− 17

]

W =

[

−0.63828 −0.42637
1.00000 0.63828

]

.

6 An Octave program for the improved Levinson-type algo-
rithm We note that we do not have to compute the counteridentity
matrix, J , in the program below. We can write the program without
it. We included it in the program for the sake of clarity. We note also
that the program can be shortened if we use Octave’s built-in functions
and operators. But, we decided to write it as above to make it easy to
understand for readers who do not know Octave.

#
1;
function J = Counter(n)
usage: J = Counter(n)
description: Creates the counteridentity matrix of order n.
J=zeros(n);
for i=1:n

J(i,n-i+1)=1;
endfor;
endfunction
function Z = solve(sigma,D)
description : Solves the system TnZ = D, where n is even and
Tn is a real skew-symmetric Toeplitz matrix generated by
[sigma(1) sigma(2) · · · sigma(n− 1)]T .
The input sigma = [sigma(1) sigma(2) · · · sigma(n + 1)]T

is the generator of Tn+2. It is an (n + 1) × 1 column vector.
The input D is an n × 2 matrix (matrix of constant terms).
usage: Z = solve(sigma,D)
n = rows(sigma)- 1;

256 IYAD T. ABU-JEIB

b = D(:,1); # b is the first column of D.
c = D(:,2); # c is the second column of D.
Y = [-sigma(2)/sigma(1),-sigma(3)/sigma(1);1,sigma(2)/sigma(1)];
T2 = [0,sigma(1);-sigma(1),0];

X = [-b(2)/sigma(1),-c(2)/sigma(1);b(1)/sigma(1),c(1)/sigma(1)];
R = [sigma(1),sigma(2);sigma(2),sigma(3)];
E = R′ * Y; # The prime is used in Octave for transpose.

W = zeros(2,2); # W is the 2 × 2 zero matrix.
for k = 2:n-2

if (rem(k, 2) != 0)

continue;
endif;
R = zeros(k,2);
for i=1:k

R(i,1)=sigma(i);
R(i,2) = sigma(i+1);

endfor;

S = zeros(2,2);
S(1,1) = sigma(k+1);
S(1,2) = sigma(k+2);

S(2,1) = sigma(k+2);
S(2,2) = sigma(k+3);
C = zeros(2,2);

C(1,1) = b(k+1);
C(2,1) = b(k+2);
C(1,2) = c(k+1);
C(2,2) = c(k+2);

J = Counter(k);
E = E + (T2 - E) * W * W;
P = inv(T2 - E);

W = P * (S + R′ * J * Y);
Z = Y + J * Y * W;
M = P * (C + R′ * J * X);

V = X + J * Y * M;
Y = [Z;W];
X = [V;M];

endfor;

Z = X;
endfunction;

SKEW-SYMMETRIC TOEPLITZ MATRICES 257

REFERENCES

1. I. T. Abu-Jeib and T. S. Shores, On properties of matrix I
(−1) of Sinc methods,

New Zealand J. Math. 32 (2003), 1–10.
2. D. Delsarte and Y. Genin, The split Levinson algorithm, IEEE Transactions

on Acoustics Speech and Signal Processing ASSP 34 (1986), 470–477.
3. P. Gierke, Ph.D. thesis, University of Nebraska-Lincoln, 1999.
4. G. Heinig and K. Rost, Fast algorithms for skewsymmetric Toeplitz matrices,

Toeplitz matrices and singular integral equations (Pobershau, 2001) 193–208,
Oper. Theory Adv. Appl., 135, Birkhuser, Basel, 2002.

5. J. Lund and K. Bowers, Sinc Methods for Quadrature and Differential Equa-
tions, SIAM, Philadelphia, 1992.

6. A. Melman, The even-odd split Levinson algorithm for Toeplitz systems, SIAM
J. Matrix Anal. Appl. 23, 1 (2001), 256–270.

7. A. Melman, A two step even-odd split Levinson algorithm for Toeplitz systems,
Linear Algebra Appl. 338 (2001), 219–237.

8. F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Spring-
er-Verlag, New York, 1993.

9. F. Stenger, Collocating convolutions, Math. Comp. 64 (1995), 211–235.
10. F. Stenger, Matrices of sinc methods, J. Comput. Appl. Math. 86 (1997),

297–310.

Department of Computer Science and Information Systems, Fenton Hall,

SUNY Fredonia, Fredonia, NY 14063, USA

E-mail address: abu-jeib@cs.fredonia.edu

