Announcement iconContinuing Accepting Applications for Admission !!
for the Spring Semester of the Academic Year 2019/2020

Localization of the Voltage-Dependent Anion Channel-1 Ca2+- Binding Sites

Authors: 
Israelson A.
Abu-Hamad S.
Zaid H.
Nahon E.
Shoshan-Barmatz V.
Journal Name: 
Cell Calcium
Volume: 
41
Issue: 
3
Pages From: 
235
To: 
244
Date: 
Saturday, March 31, 2007
Keywords: 
Voltage-dependent anion channel (VDAC) Porin Ca2+-binding sites Azido ruthenium (AzRu) Ruthenium red (RuR) Apoptosis
Abstract: 
Photoreactive azido ruthenium (AzRu) has been recently shown to specifically interact with Ca2+-binding proteins and to strongly inhibit their Ca2+-dependent activities. Upon UV irradiation, AzRu can bind covalently to such proteins. In this study, AzRu was used to localize and characterize Ca2+-binding sites in the voltage-dependent anion channel (VDAC). AzRu decreased the conductance of VDAC reconstituted into a bilayer while Ca2+, in the presence of 1 M NaCl, but not Mg2+, prevented this effect. AzRu had no effect on mutated E72Q- or E202Q-VDAC1 conductance, and [103Ru]AzRu labeled native but not E72Q-VDAC1, suggesting that these residues are required for AzRu interaction with the VDAC Ca2+-binding site(s). AzRu protected against apoptosis induced by over-expression of native but not E72Q- or E202Q- murine VDAC1 in T-REx-293 cells depleted of endogenous hVDAC1. Chymotrypsin and trypsin digestion of AzRu-labeled VDAC followed by MALDI-TOF analysis revealed two AzRu-bound peptides corresponding to E72- and E202-containing sequences. These results suggest that the VDAC Ca2+-binding site includes E72 and E202, located, according to a proposed VDAC1 topology model, on two distinct cytosolic loops. Furthermore, AzRu protection against apoptosis involves interaction with these residues. Photoreactive AzRu represents an important tool for identifying novel Ca2+-binding proteins and localizing their Ca2+-binding sites.